Mutants with temperature-sensitive defects in the Escherichia coli mismatch repair system: sensitivity to mispairs generated in vivo.

نویسندگان

  • Esther S Hong
  • Annie Yeung
  • Pauline Funchain
  • Malgorzata M Slupska
  • Jeffrey H Miller
چکیده

We have used direct selections to generate large numbers of mutants of Escherichia coli defective in the mismatch repair system and have screened these to identify mutants with temperature-sensitive defects. We detected and sequenced mutations that give rise to temperature-sensitive MutS, MutL, and MutH proteins. One mutation, mutS60, results in almost normal levels of spontaneous mutations at 37 degrees C but above this temperature gives rise to higher and higher levels of mutations, reaching the level of null mutations in mutS at 43 degrees C. However, at 37 degrees C the MutS60 protein can be much more easily titrated by mispairs than the wild-type MutS, as evidenced by the impaired ability to block homologous recombination in interspecies crosses and the increased levels of mutations from weak mutator alleles of mutD (dnaQ), mutC, and ndk. Strains with mutS60 can detect mispairs generated during replication that lead to mutation with much greater sensitivity than wild-type strains. The findings with ndk, lacking nucleotide diphosphate kinase, are striking. An ndk mutS60 strain yields four to five times the level of mutations seen in a full knockout of mutS. These results pose the question of whether similar altered Msh2 proteins result from presumed polymorphisms detected in tumor lines. The role of allele interactions in human disease susceptibility is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains.

Nucleoside diphosphate (NDP) kinase is one of the enzymes that maintains triphosphate pools. Escherichia coli strains (ndk) lacking this enzyme have been shown to be modest base substitution mutators, and two members of the human family of NDP kinases act as tumor suppressors. We show here that in E. coli strains lacking NDP kinase high levels of mispairs are generated, but most of these are co...

متن کامل

Mismatch repair in Escherichia coli cells lacking single-strand exonucleases ExoI, ExoVII, and RecJ.

In vitro, the methyl-directed mismatch repair system of Escherichia coli requires the single-strand exonuclease activity of either ExoI, ExoVII, or RecJ and possibly a fourth, unknown single-strand exonuclease. We have created the first precise null mutations in genes encoding ExoI and ExoVII and find that cells lacking these nucleases and RecJ perform mismatch repair in vivo normally such that...

متن کامل

Conditional DNA repair mutants enable highly precise genome engineering

Oligonucleotide-mediated multiplex genome engineering is an important tool for bacterial genome editing. The efficient application of this technique requires the inactivation of the endogenous methyl-directed mismatch repair system that in turn leads to a drastically elevated genomic mutation rate and the consequent accumulation of undesired off-target mutations. Here, we present a novel strate...

متن کامل

DNA mismatch correction.

PERSPECTIVES ANDUMMARY .............................................................. 435 BIOLOGY OFMISMATCH ORRECTION ................................................... 437 Evidence for Mismatch Processing in Vivo .................................................. 437 Postreplication Repair of Biosynthetic Errors ............................................... 438 dam-Independent Mismatch Cor...

متن کامل

Homologous Recombination Rescues Mismatch-Repair-Dependent Cytotoxicity of SN1-Type Methylating Agents in S. cerevisiae

Resistance of mammalian cells to S(N)1-type methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) generally arises through increased expression of methylguanine methyltransferase (MGMT), which reverts the cytotoxic O(6)-methylguanine ((Me)G) to guanine, or through inactivation of the mismatch repair (MMR) system, which triggers cell death through aberrant processing of (Me)G/T ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 3  شماره 

صفحات  -

تاریخ انتشار 2005